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Rapid Method for the Discrimination of Red Wine Cultivars Based
on Mid-Infrared Spectroscopy of Phenolic Wine Extracts
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Mid-infrared spectroscopy and UV—vis spectroscopy combined with multivariate data analysis have
been applied for the discrimination of Austrian red wines, including the cultivars Cabernet
Sauvignon, Merlot, Pinot Noir, Blaufrénkisch (Lemberger), St. Laurent, and Zweigelt. Both authentic
wines and their phenolic extracts were investigated by attenuated total reflectance (ATR)—mid-
infrared spectroscopy. Phenolic extracts were also investigated by UV—vis spectroscopy. The wine
extracts were obtained by solid-phase extraction with C-18 columns and elution by methanol
containing 0.01% hydrochloric acid. Hierarchical cluster analysis was performed with mid-infrared
spectra of both wines and extracts, as well as with UV—vis spectra of the phenolic extracts. Data
processing involved vector normalization and derivation of the spectra. Due to varying concentrations
of main components including sugar and organic acids, satisfactory classification of untreated wines
was not achieved. However, when using mid-infrared spectra of the phenolic extracts, almost
complete discrimination of all cultivars investigated was achieved. The use of UV—vis spectroscopy
for cultivar discrimination was found to be limited to the authentication of the Burgundy species
Pinot Noir. In addition, soft independent modeling of class analogy was applied to the mid-infrared
spectra of the extracts. It was possible to establish class models for five different wine cultivars
and to classify test samples correctly.
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INTRODUCTION

A rapid analytical method for the determination of
the varietal origin of grapes and wines is of great
interest to both the wine industry and the consumer.
The individual phenolic fingerprint as reflected in the
composition of anthocyanins and flavonoids (1), as well
as procyanidins, hydroxycinnamic acids, and their
derivatives is distinctive for any plant. Mainly the
analysis of anthocyanins but also the analysis of fla-
vonoids has therefore been used for distinguishing
among grape varieties (2—5). Commonly, solid-phase
extraction of grape skin extracts or wines followed by
reversed phase HPLC-UV—vis methods is used to
analyze this part of the phenolic fingerprint. Also, HPLC
combined with mass spectrometry is gaining increased
attention for investigating the anthocyanin and fla-
vonoid composition (6, 7). These chromatography-based
methods provide essential information on the composi-
tion of wines and allow discrimination of cultivars, but
they are time-consuming and cost-intensive. HPLC does
enable resolution and accurate measurement of residual
monomeric anthocyanins. However, as the wine ages
more stable oligomeric and polymeric pigments are
formed (8, 9), causing a decrease in the concentration
of the monomeric anthocyanins. This might influence
the correct classification of mature wines based on
anthocyanin analysis (10). Although the phenolic com-
position may be influenced by vinification, maturation,
and aging, the differences in the overall phenolic

* Corresponding author (telephone ++43158801/15140; fax
++4315880115199; e-mail blendl@mail.zserv.tuwien.ac.at).

10.1021/jf001196p CCC: $20.00

fingerprints might still be characteristic for each culti-
var. In earlier studies besides the anthocyanins also
other phenolic components, in particular flavonoids, of
various cultivars were investigated by liquid chroma-
tography. The most outstanding differences in grape
varieties were those occurring in the distribution of
flavan-3-ol monomers. Here varieties were found in
which the concentration of (+)-catechin is higher than
that of (—)-epicatechin. The differences in composition
observed can be related to the variety (11). In this
context wines of the same cultivar but growing in
different areas, as was the case in this study, might also
vary in the concentration of the flavan-3-ols. In Pinot
Noir remarkably high concentrations of (+)-catechin
have been found in every region surveyed (12). It was
found that there is a much higher concentration of
catechins in Pinot Noir than in any other cultivar.
Moreover, the ratio of (+)-catechin/(—)-epicatechin also
differed among cultivars, with wines from Pinot Noir
having the highest and those from Shiraz the lowest
ratios. In the survey of McDonald et al. (13) free and
conjugated myricetin and quercetin contents (flavonols)
of red wines were studied. High levels up to 41.6 mg/L
were found particularly in small berry cultivars, for
example, Cabernet Sauvignon. The absence of acylated
anthocyanins is a strong characteristic of the Burgundy
family (Pinot Noir) and is well-known and widely
described in the literature (14). In contrast to chroma-
tography, spectroscopic techniques (UV, vis, IR), when
applied to mixtures, are less selective. However, spectra
contain information about the complete phenolic com-
position of the wines under investigation. Near-infrared
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(NIR) as well as mid-infrared (MIR) spectroscopic
techniques combined with multivariate data analysis
are very promising in this context. NIR spectroscopy has
already found widespread application in quality control
and process analysis in the food industry. Applications
for the purpose of classification include coffee beans (15),
wheat flour (16), soy sauce (17), and olive oil (18).
However, due to the fact that NIR absorptions reflect
overtones and combination bands of fundamental tran-
sitions, NIR spectra are much less distinct than MIR
spectra. MIR absorption bands are generally well re-
solved and can be related to defined vibrational transi-
tions. NIR-based applications dominate so far due to the
ruggedness and ease of operation of NIR with respect
to MIR spectrometers. However, significant improve-
ments in the instrument design and auxiliary optics
have made modern MIR spectrometers sufficiently
robust for routine applications. In the case of liquids or
pastes, MIR spectra are conveniently recorded using the
attenuated total reflection (ATR) technique (19). Earlier
studies show applications in, for example, coffee clas-
sification (20), fruit identification in purees (21), and
identification of meat products (22), edible oils, and
butters and margarines (23).

In the present paper UV—vis and MIR spectroscopy,
combined with multivariate data analysis, was applied
to wine analysis with the aim of discriminating among
wines of different cultivars of Vitis vinifera. The new
approach of this method was to avoid the time-consum-
ing separation and analysis of single compounds and
to take a significant spectrum of the whole phenolic
fingerprint instead. To our best knowledge this has not
been done with wines or wine extracts either in the UV—
vis or in the mid-infrared region so far.

MATERIALS AND METHODS

Wine Samples. Thirty-eight red wine samples were col-
lected from collaborating wineries in Lower Austria and
Burgenland (Austria). Authentic wines from the grapes Cab-
ernet Sauvignon (8), Blaufrankisch (6), Merlot (3), Pinot Noir
(8), St. Laurent (7), and Zweigelt (6) were selected from the
1999 harvest. According to the wineries the wines were
individually fermented and aged either in new oak or in
stainless steel tanks.

Sample Cleanup by Solid-Phase Extraction (SPE).
Bond Elute SPE cartridges containing 1000 mg of sorbent and
6 mL of total volume were obtained from Varian. Methanol
(Fluka HPLC gradient grade), hydrochloric acid (Fluka), and
distilled water were used as solvents. All wines were filtered
before SPE with disposable syringe filters (0.45 um pore size,
Millipore). The cartridges were preconditioned successively
with 10 mL of methanol and 10 mL of distilled water. Samples
(3 mL) were diluted 1:5 with distilled water and loaded onto
the columns. To remove the polar components of the wines,
the cartridges were washed with 20 mL of water and dried by
means of a vacuum pump (15—20 mbar). The extracts were
obtained by eluting with six portions of 0.5 mL of acidic
methanol (0.01% HCI). The completeness of elution was
checked by measuring the infrared spectra of the eluates.

Data Acquisition. All spectra of the extracts and wines
were collected using an FTIR spectrometer (Equinox IFS 55,
Bruker), equipped with a horizontal ATR cell (Dura SamplIR,
SensIR Technologies) and a highly sensitive narrow-band
mercury cadmium telluride (MCT) detector. For the control
of the spectrometer the software package OPUS 3.0/IR (Bruk-
er) was used. All spectra were recorded at 4 cm™! resolution
from 4000 to 700 cm™ (300 scans, apodization function:
Blackman-Harris-3-term). Spectra of the clean and dry ATR
crystal against air were used for the background. One micro-
liter of methanolic extract or wine was transferred onto the
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ATR crystal and allowed to dry. Spectra were recorded after
complete drying of the sample. All samples were measured
twice, following the above-described method.

UV—vis spectra were recorded by means of a UV—vis diode
array spectrometer (HP 8452A, Hewlett-Packard) equipped
with an 18 uL quartz cuvette (Hellma) with 1 cm optical path
length. Methanolic extracts were diluted such that the absor-
bances fitted into the linear range of the instrument and were
measured against methanol.

Data Analysis. Hierarchical Cluster Analysis. All data
processing was carried out using OPUS 3.0/IR. Data pretreat-
ment by vector normalization of IR spectra was done in the
range of 1640—950 cm™? for the phenolic extracts and between
940 and 1760 cm~* in case of the wine samples. In the case of
UV—vis the spectral region 250—600 nm was normalized. No
baseline correction was needed. For the data analysis normal-
ized spectra and their first derivatives were used. Derivatives
were calculated by using the Savitsky—Golay (24) algorithm
using nine smoothing points. For the evaluation of the spectra
a hierarchical cluster analysis was performed. The distance
matrix was calculated using Euclidean distances. From the
distance matrices the dendrograms were created using the
Wards algorithm.

Soft Independent Modeling of Class Analogy (SIMCA). The
PCA and SIMCA analyses were performed using the software
packages Unscrambler (Camo ASA, Trondheim, Norway) and
PLS Toolbox (Eigenvector Research, Inc., Manson, WA) for
Matlab (The Mathswork, Inc., Natick, MA).

Data treatment for SIMCA included calculation of the first-
derivative spectra by applying a first-order Savitsky—Golay
filter with nine smoothing points, restriction of the spectra to
the wavenumber range 1640—950 cm™*, and normalization.

For validation of the SIMCA classifications a “leave-a-third-
out” cross-validation procedure was applied. Two-thirds of the
samples were assigned to the training set and the other third
of the samples to the test set. This assignment was repeated
three times. For the classification into five different classes a
“leave-one-out” procedure was used. One sample per class was
taken out as a test sample in a randomized manner, and
models for the five classes were calculated with the remaining
training samples. This procedure was repeated eight times,
so that each sample was classified at least once.

Models for the classes were calculated after individually
mean-centering the training samples of the respective class.
Then the models were applied to the test samples, the
classification being based on the sample-to-model distances
and the leverage values (sample’s distance to the model
center).

RESULTS AND DISCUSSION

MIR Spectroscopy and Cluster Analysis of Un-
treated Wines. In the spectra of untreated wines
maximum absorbance values can be found in the region
900—1100 cm™1, with a maximum at 1050 cm~1. These
bands can be assigned to C—O valence vibrations of the
residual carbohydrates including mainly fructose and
glucose in the wine. Additionally, bands corresponding
to characteristic vibrations of organic acids also influ-
ence the spectra in the region between 1500 and 900
cm~1 (25). Both carbohydrates and organic acids con-
tribute to some extent to the varietal characteristics,
but mainly they reflect the individual style of the wine
sought after by the wine-maker. Estimates of total
phenolics in numerous red wines from many wine-
growing regions have been from 0.8 to 4 g/L (26).
Because the concentration of sugars and acids in wine
is higher, in dry Austrian table wines typically 1—9 g/L
of residual sugar and 4—7 g/L of titratable acid are
present, they mask the characteristic phenolic composi-
tion of the wine. It can therefore be assumed that
classification of the cultivars based on the whole wine
spectra is difficult.
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Figure 1. Example of a UV—vis spectrum of a phenolic
extract and the corresponding first derivative.

The result of the cluster analysis performed confirmed
this conclusion. Some relationships between clustering
and origin were found, but the result was not acceptable
for quality control purposes. The use of derivatives also
did not improve the classification. Therefore, we con-
cluded that for successful classification, the variable
main wine components including fructose, glucose,
organic acids, and alcohols among others must be
removed prior to analysis.

Optimization of Sample Cleanup by SPE. Sample
cleanup was performed to remove the major components
of wine including carbohydrates and organic acids. In
the literature various sorbent materials were studied
(27). Octadecyl silica sorbents are well described in the
literature and proved to combine both excellent reten-
tion and elution characteristics for both monomeric and
polymeric phenols in wines and musts; therefore, they
are widely used for sample cleanup (28—32).

Different volumes (1-5 mL) of wine samples were
loaded onto the columns. The maximum sample toler-
ated was 4 mL. As recommended in the literature (28,
31) acidic methanol was used for the elution step. Less
than 2 mL of eluent was not recommended in this case
because of the high sorbent mass in the cartridges.
Fractions of 0.5 mL were collected and evaluated by
MIR spectroscopy. The last fraction did not contain any
phenolic compounds. Therefore, the selected amount
of eluent (3 mL) was sufficient to quantitatively elute
all phenols from very concentrated and phenol-rich
wines.

Characterization of Methanolic Extracts by
UV—Vis Spectroscopy. UV—vis spectra contain valu-
able information on the identity of phenolic substances
and are also used for identification purposes (31, 33, 34).
To obtain a general overview on the composition of the
extracts, UV—vis analysis was performed. A typical
UV—vis spectrum of a wine extract and its first deriva-
tive is given in Figure 1. Two major bands with maxima
at 538 and 280 nm and shoulders at 520 and 310 nm
can be observed. The major anthocyanidins delphidin,
malvidin, and petunin exhibit maxima at 538 nm,
whereas cyanidin derivates have their absorption
maxima at 523—525 nm (31). Flavonoids and procya-
nidins as well as the UV-absorbing parts of the antho-
cyanin structure show maxima in the 280 nm region
(33, 35). Compared to anthocyanin and other flavonoid
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Figure 2. MIR spectra of a methanolic extract in comparison
with the corresponding dry extract.

spectra in the literature (35), where spectra of 175
flavonoids and their molar extinction coefficients are
published, the intensity of the 280 nm band relative to
the 538 nm band indicates remarkable amounts of
noncolored phenolics. These findings are in agreement
with earlier studies (36) in which along with a C-18
cleanup procedure as described above also flavonoids,
procyaninidins, and hydroxycinnamates were extracted
together with the anthocyanins.

Optimization of ATR Measurements. During the
first experiments the methanolic extracts were mea-
sured in solution. For this purpose 50 uL of extract was
transferred onto the ATR crystal. As can be seen in
Figure 2, methanol dominated the spectra and therefore
masked the spectral features of the phenolics. To remove
the interfering absorbances of the solvent, the samples
were allowed to dry on the ATR element. The sample
volume was varied between 0.5 and 10 uL; 1 uL of
sample provided a homogeneous film on the ATR
element. Absorbance values between 0.2 and 0.5 were
obtained. Due to different total phenolic contents in the
samples, the amount of dry extract formed on the ATR
surface varied. However, because the varietal differ-
ences in the phenolic composition of the cultivars
studied are reflected in the relative intensities of the
bands and are independent of the total phenolic content,
vector normalization could be used to remove differences
in the absolute intensities. The overall procedure,
including the SPE step, drying of the extract, and
spectra acquisition, was highly reproducible. The stan-
dard deviation of the replicates was <1%. This is
demonstrated in Figure 3, in which the spectrum of a
phenolic extract together with the standard deviation
calculated from triplicate analysis is shown.

MIR Spectra of Phenolic Extracts. For illustration
of the distinct pattern of the wine cultivars averaged
spectra of each cultivar are given in Figure 4. Bands at
around 1605, 1520, 1450, 1340, 1280, 1230, 1200, 1145,
1110, and 1060 cm~! are found in all spectra with
various relative intensities and minor, but varietal,
characteristic shifting in absolute band positions. Thus,
for each wine cultivar a unique phenolic fingerprint in
the MIR spectral region could be obtained. Most re-
markable are the differences at 1145 cm™%, at which
Pinot Noir exhibits the highest and St. Laurent the
lowest band intensities. Also, the band intensity at 1340
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Figure 3. Averaged MIR spectrum compared with the
standard deviation of triplicate analysis in the spectral range
selected for data analysis.
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Figure 4. Averaged MIR spectra of phenolic extracts of the
cultivars Blaufrankisch (BF), Cabernet Sauvignon (CS), Merlot
(ME), Pinot Noir (PN), St. Laurent (SL), and Zweigelt (ZW).

cm~1 can be considered as characteristic for each cul-
tivar. Wines are complex mixtures of various phenolic
compounds, so a full assignment of the spectral bands
is a challenging task and will not be attempted in this
work. Generally in the region 1680—900 cm~! numerous
bands originating from wine phenols can be found.
According to Hesse et al. (37) the bands at 1600 and
1520 cm™! can be assigned to C=C bond vibrations,
which are typical for aromatic systems. A strong con-
tribution of OH deformation vibrations can be found in
the region 1410—1260 cm~*. Strong C—O valence vibra-
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Figure 5. Dendrogram calculated from normalized first
derivatives of UV—vis spectra collected from phenolic wine
extracts.

tions between 1150 and 1040 cm~! overlap with aro-
matic fingerprint bands at 1225—950 cm~1. CH3z sym-
metric deformation vibrations occur in the region 1190—
1370 cm™L.

Data Analysis. Cluster Analysis of UV—Vis Spectra.
Identification of various anthocyanins (31, 35), fla-
vonoids (35), and procyanidins (33) has previously been
achieved by UV-—vis spectroscopy. We therefore also
investigated the potential of UV—vis spectroscopy on the
phenolic extracts for cultivar identification. For cluster
analysis the wavelength region between 250 and 600
nm was selected. The clustering of vector-normalized
UV—vis spectra resulted in three major groups. All
Blaufrankisch can be found in the first group, St.
Laurent mixed with Zweigelt in the second, and Pinot
Noir in the third group (data not shown here). The
cultivars Cabernet Sauvignon and Merlot were ran-
domly distributed among these groups, whereas two
Merlot samples were related to the Pinot Noir group.
The first derivatives of the spectra were selected to
successfully refine the method. As shown in Figure 5
the variety Pinot Noir was clearly separated. Five of
seven St. Laurent wines formed a group with Zweigelt
3 (see also IR spectroscopy), whereas the others were
mixed with the remaining Zweigelts. Wines of the
varieties Blaufrankisch, Merlot, and Cabernet Sauvi-
gnon could not be separated. Although the separation
seemed to be promising to some extent, UV—vis spec-
troscopy was not capable of clearly separating all
investigated cultivars with the exception of Pinot Noir.

Cluster Analysis of MIR Spectra. For cluster analysis
of the normalized absorbance spectra different wave-
length regions were investigated. Using a spectral
region from 1640 to 950 cm~%, optimal results were
obtained in terms of separation of the different cultivars
(Figure 6). The cultivar Pinot Noir could be clearly
distinguished. All St. Laurent were grouped together;
however, this group also included most of the Zweigelts.
Blaufrankisch were mixed with Cabernet Sauvignon,
the remaining Zweigelts, and Merlot, although the
cultivar Merlot formed a subgroup. To achieve separa-
tion of all cultivars, further data preprocessing was
investigated. First derivatives of the normalized absor-
bance spectra were calculated and subjected to cluster
analysis. The result of clustering first derivatives is
illustrated in Figure 7. As can be seen, the separation
of the varieties could be significantly improved, with all
varieties being separated. To be able to compare the
results of cluster analysis with SIMCA classification, a
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Figure 7. Dendrogram of normalized and derived (first
derivative) MIR spectra of the phenolic wine extracts.

principal component analysis (PCA) was performed on
the first-derivative spectra of the 38 samples, too, and
hierarchical cluster analysis was performed on the
obtained PC scores. The use of the first five (or more)
PC scores gave the same results as clustering with the
full spectra.

In particular, the cultivars Pinot Noir and St. Laurent
could be clearly differentiated. However, one sample of
Zweigelt was found in the group of St. Laurent. This
same sample was also found in the St. Laurent group
when cluster analysis based on the UV—vis spectra of
the extracts was performed. In the 1920s Zweigelt was
hybridized in Klosterneuburg, Austria, of St. Laurent
and Blaufrankisch. This relationship may explain the
clustering behavior of Blaufrankisch and Zweigelt.
Although they could be separated, their similarity is
reflected by the short distance of the two groups in the
dendrogram. The Bordeaux cultivars Cabernet Sauvi-
gnon and Merlot could also be distinguished from each
other. Their similarity to one another, in comparison
to the other cultivars, can be seen from the distances
in the dendrogram. Anthocyanin analysis of Cabernet
Sauvignon and Merlot (3) showed similar anthocyanin
patterns of the two varieties, and their flavonoid con-
tents are also comparable (12).

SIMCA. Because of the very promising results of
hierarchical clustering, SIMCA, a well-known method
for supervised classification that is widely used in food
analysis (38), was applied to the MIR spectra of the wine
extracts. SIMCA (39, 40) is based on PCA. Examples
for application of SIMCA in food analysis are classifica-
tion of olive oils (41), fruits (42), meat products (22), and
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wines (43). However, to our best knowledge SIMCA has
not been applied to MIR spectra of wines or wine
extracts.

From the clustering results and preliminary PCA on
the whole data (data not shown) set, it was observed
that the Burgundy cultivar Pinot Noir wines were most
distinct from all other samples, followed by the St.
Laurent wines, whereas Blaufrankisch and Zweigelt as
well as Cabernet Sauvignon and Merlot were more
similar to each other. Therefore, the SIMCA classifica-
tion of the samples into Pinot Noirs and others was
investigated first.

The eight Pinot Noir wines formed the Pinot Noir
class, all other varieties (eight Cabernet Sauvignon,
seven St. Laurent, six Blaufrankisch, five Zweigelt, and
three Merlot) the non-Pinot Noir class. All in all, 37
samples were classified and 100% of the test samples
were classified correctly. The numbers of PCs used for
the class models were one (Pinot Noir) and three (non-
Pinot Noir).

The next step was to find a class on their own for the
St. Laurent wines, besides the class of the Pinot Noir
and the class of the remaining samples. Again, a total
number of 37 samples of the three different test sets
were projected to the corresponding class models for
Pinot Noir, St. Laurent, and the rest. The percentage
of correct classification was 100% as in the case with
only two classes; one PC each was necessary to model
Pinot Noir and St. Laurent, and the other samples
required three PCs for a satisfying model.

The last approach was to model a class for each
variety of wine in the data set. The three Merlot wines
were eliminated from the data set, as their number was
not enough to model a class. The first PC was sufficient
to model each class. From the 34 samples 33 were
classified correctly and only 1 St. Laurent was misclas-
sified as Zweigelt, which corresponds to a classification
rate of 97%. There were also a few cases of double
classification of samples. One St. Laurent was assigned
to the Zweigelt class in addition to the correct St.
Laurent class; three of the Blaufrankisch samples were
also assigned to the Zweigelt class in addition to the
Blaufrankisch class, but with the samples closer to the
Blaufrankisch than to the Zweigelt model. This result
shows that the models for Blaufrankisch and Zweigelt
were overlapping to some extent. This finding is sup-
ported by the fact that Zweigelt and Blaufrankisch
cultivars are close relatives (see above), which makes
the correct classification of these two cultivars difficult.
Whereas not all of the classifications were significant
according to the SIMCA criterion within the 5% signifi-
cance level, in all cases the attributed class was the one
with the smallest sample-to-model distance.

Despite the small sample number, the promising
results of these SIMCA classifications showed that it is
possible to differentiate well among the five cultivars
of the study, as confirmed by the validation procedures
performed.

Conclusions. MIR spectroscopy and UV—vis spec-
troscopy combined with multivariate data analysis have
been applied for the discrimination of Austrian red
wines, including the cultivars Cabernet Sauvignon,
Merlot, Pinot Noir, Blaufrankisch (Lemberger), St.
Laurent, and Zweigelt. Subjecting the untreated wine
samples to MIR analysis proved the need of an SPE step
to remove spectral interferences from nonspecific car-
bohydrates and organic acids. Thus, an SPE step for
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sample cleanup of polyphenols was used to obtain
phenolic extracts of the wines. UV—vis spectra of the
wine extracts allowed the identification of only the
Burgundy cultivar Pinot Noir. However, with the use
of MIR spectroscopy almost complete discrimination of
all cultivars investigated was achieved, which demon-
strates that the high information content of MIR spectra
can be advantageously used for the fast classification
of wine cultivars. Further research activities in this field
will be undertaken to investigate more closely the inter-
and intraclass variances on a bigger data set. However,
on the basis of the results obtained so far, we conclude
that MIR spectroscopy of the characteristic phenolic
compounds of wines together with modern techniques
of data analysis is a very powerful tool to gain informa-
tion on the varietal origin of wines.

ABBREVIATIONS USED

SIMCA, soft independent modeling of class analogy;
PCA, principal component analysis; PC, principal com-
ponent; MIR, mid-infrared; NIR, near-infrared; UV—uvis,
ultraviolet—visible; ATR, attenuated total reflectance;
SPE, solid-phase extraction; ZW, Zweigelt; BF, Blau-
frankisch; PN, Pinot Noir; ME, Merlot; SL, St. Laurent;
CS, Cabernet Sauvignon.
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